Uniformly-stable Finite Element Methods for Darcy-stokes-brinkman Models
نویسندگان
چکیده
In this paper, we consider 2D and 3D Darcy-Stokes interface problems. These equations are related to Brinkman model that treats both Darcy’s law and Stokes equations in a single form of PDE but with strongly discontinuous viscosity coefficient and zerothorder term coefficient. We present three different methods to construct uniformly stable finite element approximations. The first two methods are based on the original weak formulations of Darcy-Stokes-Brinkman equations. In the first method we consider the existing Stokes elements. We show that a stable Stokes element is also uniformly stable with respect to the coefficients and the jumps of Darcy-Stokes-Brinkman equations if and only if the discretely divergence-free velocity implies almost everywhere divergence-free one. In the second method we construct uniformly stable elements by modifying some well-known H(div)-conforming elements. We give some new 2D and 3D elements in a unified way. In the last method we modify the original weak formulation of Darcy-StokesBrinkman equations with a stabilization term. We show that all traditional stable Stokes elements are uniformly stable with respect to the coefficients and their jumps under this new formulation.
منابع مشابه
A New Divergence-Free Interpolation Operator with Applications to the Darcy--Stokes--Brinkman Equations
A local interpolation operator, preserving the divergence, is constructed explicitly, which is the first ever one for the divergence-free elements. A divergence-free finite element method is applied to the Darcy-Stokes-Brinkman flow in a mixed region of both free and porous medium. The method is of optimal order in contrast to the traditional H and H mixed finite elements, which work for either...
متن کاملA Mixed Formulation for the Brinkman Problem
The Brinkman model is a unified law governing the flow of a viscous fluid in cavity (Stokes equations) and in porous media (Darcy equations). In this work, we explore a novel mixed formulation of the Brinkman problem. Introducing the flow’s vorticity as additional unknown, this formulation allows for a uniformly stable and conforming discretization by standard finite elements (Nédélec, Raviart-...
متن کاملA stabilized mixed finite element method for Darcy–Stokes flow
This paper presents a new stabilized finite element method for the Darcy–Stokes equations also known as the Brinkman model of lubrication theory. These equations also govern the flow of incompressible viscous fluids through permeable media. The proposed method arises from a decomposition of the velocity field into coarse/resolved scales and fine/unresolved scales. Modelling of the unresolved sc...
متن کاملA Block-Diagonal Algebraic Multigrid Preconditioner for the Brinkman Problem
The Brinkman model is a unified law governing the flow of a viscous fluid in cavity (Stokes equations) and in porous media (Darcy equations). In this work, we explore a novel mixed formulation of the Brinkman problem by introducing the flow’s vorticity as an additional unknown. This formulation allows for a uniformly stable and conforming discretization by standard finite element (Nédélec, Ravi...
متن کاملOn mechanics-based a posteriori criteria to assess accuracy of numerical solutions for Darcy and Darcy-Brinkman equations
This paper presents a new approach to verify accuracy of computational simulations. We develop mathematical theorems which can serve as robust a posteriori error estimation techniques to identify numerical pollution, check the performance of adaptive meshes, and verify numerical solutions. We demonstrate performance of this methodology on problems from flow thorough porous media. However, one c...
متن کامل